AVM case
IOUS could exactly localize the lesion, the depth of the lesion, could identify the appropriate approach and could define the lesion. Also, it defines the residual of hemosiderin from the previous hematoma as hyperechogenicities surrounding the AVM. It also helped to identify the feeding artery to be clipped first before excision. It also confirmed the total excision o the lesion.
Case presentation
A 43-year-old male patient complained of syncopal attack, headache and blurring of vision 3 months ago of progressive course with history of seizures 4 years ago which are controlled on triple antiepileptic therapy. On examination: GCS 15 with normal motor and sensory function. The MRI images show evidence of serpentine flow void nidus seen in the left occipital lobe measuring ~ 27 × 42 × 30 mm with no surrounding edema or mass effect (see Fig. 1), and CTA shows diffuse superficial serpiginous dilated vascular structures seen in left occipital lobe (mainly cortical and subcortical in location reaching the trigon of left lateral ventricle), with central nidus supplied by relatively dilated left PCA (measuring 2.5 mm), drained by cortical veins draining mainly into left transverse sinus with no associated edema, no hemorrhage, no mass effect, no aneurysms, no ischemic insult (Spetzler scale = 3) (see Fig. 2).
The CTA was of very high quality and the neurovascular committee (formed of neurosurgeons, neurologists and neuroradiologists) decided to do surgical excision without the need for digital subtraction angiography (DSA) and without preoperative embolization. The steps of the surgery were explained to the patient and his relatives and the also the expected advantages and disadvantages of the ultrasound use intra-operative, and the consent was taken.
Operative room setup
The operating table was put in the middle and supplied with an extension piece to apply a Mayfield clamp to fix the patient’s head and the ventilator was put to the left of the surgeons and the ultrasound device was put in front of the operating surgeon to the right (see Fig. 3).
Intra-operative
As the lesion is occipital, the patient’s head was fixed on Mayfield Clamp and the patient was put in prone position, and U-shaped skin incision was made and left occipital craniectomy flap was elevated and the dura is exposed then we used ultrasound to define the borders of the lesion, upper, lower, medial and lateral borders to design the dural incision and focus it on the site of interest to prevent unwanted brain tissue exposure. At first, the craniectomy was inadequate which is detected by the ultrasound as the lateral border of the AVM was not reached (Fig. 4), so the operator had to extend the bone flap laterally. It also visualized its relation to the surrounding structure as adjacent dural folds (see Fig. 5). Then after dural incision and exposure of the AVM, the color Doppler mode was used to detect the flow in the related vessels in grades of red and blue color (red in vessels where the flow is directed toward the probe mostly the arteries and blue color in vessels where the flow directed away from the probe mostly the veins) and the spectral mode defines the flow velocity and its pattern in these vessels (see Fig. 6). So, we could detect the feeding arteries and draining veins. Then, clipping of the artery is done first and the excision is done. At the end, we use ultrasound again to confirm total excision of the AVM with no residual left (see Fig. 7). To get adequate ultrasound image, we irrigated the field with saline as the air is bad conductor to the sound; however, water is a good conductor which leads to better image quality (See Figs. 3, 4).
Intra-operative microscopic images was obtained to show accurate localization of the AVM based on intra-operative ultrasound without unwanted brain tissue exposure (see Fig. 8). The lesion was taken for pathological examination which revealed admixture of malformed vessels, and some have thick-walled vessels and others thin-walled capillaries with hemorrhage, inflammatory cells and hemosiderin pigment, compatible with arteriovenous malformation (Figs. 8, 9).
Postoperative
The patient was fully conscious with GCS 15 with no neurological deficits or attacks of seizures and stayed in the neurosurgical ICU for 2 days and then discharged to the wards for 5 days and discharged to home with stable hemodynamics and with no complications with regular follow-up at the outpatient clinic. Follow-up CT brain was done in the second day postoperatively which is the hyperdense shadow of the clip with no ischemia (Fig. 9).
Cavernoma case
Ultrasound is used to accurately localize the cavernoma being small in size and subcortical in position with difficult localization depending on preoperative MRI or CT. Thanks to the fact that ultrasound gives real-time images, it could overcome the brain shift phenomenon occurring during resection and detect the lesion successfully in contrast to other intra-operative imaging modalities. In grayscale B-mode, the lesion appeared as hyperechoic rounded lesion with surrounding brain tissue. It also could detect the required depth for resection and the extent of resection. It provided convincing alternative to neuronavigation systems in institutes lacking them.
Case presentation
A 45-year-old male patient presented with sudden attacks of seizures 3 months ago with intact sensory and motor functions. CT brain showed rt frontal hyperdense lesion measuring 20.1 × 22.7 mm mostly bleeding cavernoma (see Fig. 10). MRI brain was done and revealed rt frontal cavernoma (see Fig. 11). Then the patient is admitted for surgical excision of the cavernoma which is subcortical and needs excellent localization.
Intra-operative
The patient is put in supine position and the ultrasound device was on the left to the surgeon and the ventilator was to the right. Then, U-shaped skin incision and craniectomy bone flap were elevated. Then before dural incision, the ultrasound is used to take an image to localize the lesion and determine its depth and decide the best approach to reach. The lesion appeared as hyperechoic lesion surrounded by normal brain tissue (see Fig. 12). Then after dural incision, the IOUS is used to get real-time images of the lesion, while resection is going on to guide the surgeon intra-operative and assess the extent of resection. For better resolution, we used saline bath in the cavity of resection underneath the probe. Then after complete resection IOUS image was taken to confirm complete excision (see Fig. 13).
Postoperative
The patient was fully conscious with GCS 15 with no neurological deficit. He stayed in the ICU for one day, then discharged to the ward for 4 days and then discharged to the home and postoperative image were done (see Figs. 14, 15).
N.B: the case was challenging due to unavailability of neuronavigation system or brain mapping techniques, and the lesion was very close to the motor cortex. So, IOUS was very helpful.