The majority of our cases was in the second decade and during the fight which is consistent with Izci et al. [7]. TBI is classified according to the extent of brain injury into mild, moderate, or severe. A low Glasgow coma score (GCS) score at admission is usually correlated with severe TBI, the outcome of which is variable from mild cases with complete recovery to major permanent disability or even death. Mild and moderate TBI may also cause a group of temporary or permanent physical, cognitive, emotional, and social problems [8, 9].
Optimum management of penetrating brain injury needs sufficient understanding of the mechanism and pathophysiology of injury. Computed tomography scanning considered as the neuroradiological modality of choice for penetrating brain injuries. Cerebral angiography is recommended in patients when penetrating brain injuries carry a high suspicion of vascular injury [10].
The recent trend now in management of penetrating brain injuries is toward a minimal invasive and a less aggressive surgical debridement of deeply seated bone and metal fragments. With a shift toward the conservative line by aggressive antibiotic prophylaxis to guard against intracranial infection and use of anticonvulsants drugs due to the high risk of post-traumatic in these patients. Surgery will be recommended in patients with cerebrospinal fluid (CSF) leaks those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain [10].
When there is a significant mass effect either in the form of necrotic brain tissue or intracranial hematoma, surgery should be performed. Necrotic brain tissues should be debrided and removal of safely accessible bone fragments should be done. Intracranial hematomas should be evacuated [11,12,13]. It was found that the routine surgical removal of bone fragments lodged deep in the brain in a far distance from the entry site especially in the eloquent areas of the brain is not recommended. Although theoretically the removal of these foreign bodies from the eloquent cortex may decrease the risk of posttraumatic convulsions, it has been found that it may worsen the outcomes with possibly higher morbidity, and a conservative approach in those cases has been recommended [11,12,13,14].
Surgical treatment should be performed within the first 12 h from the time of injury to decrease the risk of infectious complications [13, 15]. Surgical incision is preferred to be done in the site of injury and is related to the area that requires debridement. When an air sinus has been injured or violated in the route of the non-missile, a water tight closure of the dura should be performed aiming to decrease the risk of abscess formation and CSF fistulas [15, 16].
Infectious complications after PBI are not uncommon, and they are associated with higher rates of morbidity and mortality, due to the contamination of foreign objects, hair, skin, and bone fragments which can be driven into the brain tissue along the pathway of the causative tool [3, 17, 18]. One case was reported with hydrocephalus which is the same in another study [19, 20, 7].
The infectious complications which are the most common among the penetrating brain injuries include local wound infections, meningitis, ventriculitis, or cerebral abscess. The presence of cerebrospinal fluid leaks, air sinus wounds, transventricular injuries, or injuries crossing the midline will harbor the infectious complications [3, 17, 18]. Associated intraventricular hemorrhage was reported in 16.7% (three cases), while in another study was 55% [7].
Another complication associated with craniocerebral penetrating brain injuries is posttraumatic epilepsy, which reflects the extent of brain damage and is positively correlated with com [21]. Incidence of seizures can be increased with the extent of brain damage and can reach 30–50% of patients suffering a PBI. ln 10% of patients, seizures appeared early (first 7 days after the trauma), and 80% during the first 2 years, while about 10% may not have their first seizure until 5 or more years after injury. So the recent trend now is towards the recommended use of prophylactic anticonvulsants from the first week after penetrating brain injuries although the initial studies did not confirm the beneficial effect of the prophylactic anticonvulsants administration [3, 13, 22, 23].
In our series, we observed postoperative seizures in six patients and anticonvulsants were administered. Anticonvulsants were discontinued if no seizures were reported after 2 years [24]. All individuals who suffered brain damage received anticonvulsants as part of routine medical treatment [1, 25]. On the other hand, all deaths occurred in our series were related to poor Glasgow coma score at the initial presentation and intraventricular hemorrhage, which correlates with another study [9], while no deaths occurred in another series [11].
Penetrating injury by a foreign body (rod stuck, knives, keys, axe) can result in a significant accumulation of intraventricular blood. This type of damage is associated with particularly poor prognosis. Penetrating brain injuries involving the ventricular system are more susceptible to intracranial sepsis because the disturbance of CSF flow dynamics makes them prone to CSF leakage and then infection. The highest mortality was in the posterior fossa and brain stem injuries while there was low mortality in frontal injuries [4, 7, 9].