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Abstract 

This review assesses laser‑based diagnostic modalities for intraoperative tissue diagnosis in neurosurgical oncology, 
emphasizing their utility in delineating tumor margins. Technologies such as optical coherence tomography, photoa‑
coustic imaging, and confocal microscopy are scrutinized for their capability to enhance intraoperative discernment 
of neoplastic versus healthy tissue. We discuss the technical advancements, limitations related to depth penetration 
and resolution, and innovative approaches to mitigate these challenges. Economic and regulatory considerations 
pertinent to the clinical adoption of these technologies are also examined. The review highlights current clinical trials 
and research initiatives aiming to validate and standardize these applications. It concludes by highlighting the impor‑
tance of ongoing research, cross‑disciplinary cooperation, and professional training to integrate laser‑based diagnos‑
tics into neurosurgical practice, with the ultimate goal of optimizing patient outcomes in brain tumor resection.

Introduction
Primary and metastatic brain tumors pose significant 
diagnostic and therapeutic challenges. Traditional imag-
ing modalities have been essential in the diagnosis, sur-
gical planning, and postoperative monitoring of these 
tumors. Recently, laser-based diagnostic technolo-
gies have emerged as valuable tools, offering real-time, 

high-resolution data that can guide surgical interven-
tions. The physics underlying these laser technologies 
generally involves the absorption and scattering of laser 
light by tissue, yielding data that can be analyzed for diag-
nostic purposes. While lasers are traditionally associated 
with therapeutic applications, their diagnostic potential 
is increasingly acknowledged, especially in obviating the 
need for time-consuming frozen section biopsies during 
neurological surgery. Despite the inherent limitations of 
light-based imaging, such as challenges with deep ana-
tomical structures due to the physics of light absorp-
tion and reflection, laser technologies hold promise for 
improving both surgical efficiency and tumor resection 
accuracy. This review will explore the advancements, 
limitations, and applications of laser-based diagnostic 
technologies, focusing specifically on their role in brain 
tumor diagnosis and surgical guidance.
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Current technologies in laser diagnostics
Diagnosis of brain tumors primarily relies on magnetic 
resonance imaging (MRI) with and without contrast; 
computed tomography (CT) is an alternative for those 
who cannot undergo MRI [1]. The standard for tissue 
status assessment during neurosurgical tumor resection 
remains excisional biopsy with frozen section analy-
sis, a method limited by its time-consuming nature and 
lack of real-time diagnostic capability [2]. Prognosis fol-
lowing surgical intervention is intrinsically linked to the 
completeness of tumor resection. Incomplete resection 
can lead to tumor recurrence and poorer long-term out-
comes [3]. These modalities aim to address the limita-
tions of conventional imaging techniques and excisional 
biopsy, paving the way for more effective and precise 
neurosurgical procedures by allowing real-time diagnosis 
and improved surgical guidance.

Hyperspectral imaging (HSI)
HSI provides real-time, high-resolution spectral imag-
ing, achieving an 80% accuracy rate in delineating glio-
blastoma margins [4]. It surpasses traditional MRI in 
both spatial and spectral resolution while remaining cost-
effective [5, 6]. In the preoperative phase, the system is 
calibrated and mounted onto the surgical microscope. 
During surgery, HSI captures spectral data controlled via 
a remote computer, offering surgeons precise guidance 
for tissue resection. This intraoperative assistance can 
enhance the likelihood of a successful, complete tumor 
removal, ultimately improving patient prognosis [7].

Photoacoustic imaging (PAI)
Photoacoustic imaging (PAI) leverages laser-induced 
ultrasound signals and integrates with multispectral opti-
cal tomography (MSOT) for nuanced tissue characteriza-
tion, including angiogenesis and blood saturation [8, 9]. 
During neurosurgery, an ultrasound probe captures these 
signals, providing real-time images that assist in delin-
eating tumor from healthy tissue. However, its utility is 
primarily restricted to superficial brain tumors, with 
diminished effectiveness in deeper tissues [8].

Laser‑induced fluorescence (LIF)
In the realm of surgical resection of brain tumors, laser-
induced fluorescence (LIF) stands out as a promis-
ing modality. Guided by various light wavelengths, LIF 
employs their differential absorptive properties to delin-
eate tumor borders intraoperatively [10]. Research led 
by Kustov et  al. demonstrated the effectiveness of LIF, 
particularly when using red-shifted wavelengths for 
enhanced penetration into brain tissues [10]. The fluoro-
phore of choice in LIF is 5-aminolevulinic acid (5-ALA), 
known for its capability to cross the blood–brain barrier 

and yield protoporphyrin IX, a fluorescent substance 
[11].

Near‑infrared radiation (NIR) spectroscopy
Near-infrared radiation (NIR) spectroscopy also shows 
promise in delineating tumor margins. Investigations 
led by Butte et  al. revealed NIR’s utility in displaying 
microvessel involvement and precisely defining tumor 
borders [12]. The technique works by shining NIR light 
into the tissue and measuring the reflected or transmit-
ted light. The unique optical properties of tumorous tis-
sue, such as altered blood supply and metabolic profiles, 
result in distinct patterns of light absorption and scatter-
ing. These patterns are analyzed in real time, allowing for 
immediate identification of tissue type. This modality is 
gaining attention for its cost-effectiveness and clinical 
feasibility [13].

Optical coherence tomography (OCT)
Optical coherence tomography (OCT) leverages low-
coherence interferometry to differentiate between solid 
tumors, diffusely invaded brain tissue, and adjacent nor-
mal brain parenchyma with high spatial resolution [14]. 
By splitting a light source into a sample and reference 
arm, and recombining the scattered and reflected light, 
OCT generates cross-sectional images with micrometer-
scale resolution. This allows for ’optical biopsies,’ offer-
ing histology-level detail without tissue resection [15]. 
Its high soft tissue contrast surpasses established onco-
logical imaging modalities in anatomical detail, aiding in 
early cancer diagnosis [16]. The technology’s rapid image 
acquisition and adaptability to miniaturized probes posi-
tion it as a novel intraoperative tool for detecting residual 
tumors and guiding neurosurgical resections [14, 16]. 
Notably, OCT requires no labeling and delivers quanti-
tative, depth-resolved tumor information, setting it apart 
from other optical modalities like spectroscopy, fluores-
cence, and DOT [16].

Fluorescence and diffuse reflectance spectroscopy
For intraoperative diagnosis, minimally invasive opti-
cal techniques such as fluorescence spectroscopy (FRS) 
and diffuse reflectance spectroscopy (DRS) are garner-
ing attention. FRS illuminates tissue with specific wave-
lengths to excite endogenous fluorophores like amino 
acids and enzyme cofactors. The emitted light, captured 
and analyzed, reveals dynamic biochemical composi-
tions, cellular structures, and metabolic statuses within 
tumors [17–19]. DRS, on the other hand, shines white 
light onto tissue and measures back-scattered light, pro-
viding insights into tissue biochemistry, such as hemo-
globin concentration, and morphological features like 
scatter size and shape [20]. Combining FRS and DRS 
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has shown promise in differentiating brain tumors from 
normal tissue. Lin et  al. utilized steady-state autofluo-
rescence and diffuse reflectance to effectively distinguish 
normal cortex from brain tumors [21]. In animal studies, 
Butte et al. demonstrated that gliomas and normal cortex 
could be differentiated using indocyanine green, BLZ-
100, and a charge-coupled device camera [12].

In summary, advancements in laser and optical tech-
nologies are progressively filling the gaps in real-time, 
intraoperative tumor diagnostics. These modalities show 
promise in improving surgical precision, thereby poten-
tially impacting long-term patient outcomes (Fig. 1).

Limitations and challenges
Technical limitations
Optical imaging technologies such as OCT and PAI 
indeed offer advancements in the realm of intraoperative 
diagnosis but come with their own set of technical limi-
tations. Limitations include depth penetration, scatter-
ing, and absorption of laser light, which can impair their 
effectiveness, particularly for deeper-seated brain tumors 
[22]. Factors like tissue heterogeneity, blood flow, and 
ambient light conditions can also influence the accuracy 
of these modalities, necessitating meticulous calibration 

and control. Various methodologies have been proposed 
to mitigate these limitations, such as utilizing imaging 
probes with long wavelengths like near infrared II (NIR-
II) to enhance tissue penetration, reduce scattering, and 
ultimately improve image quality [23].

Cost and accessibility
Although some of these techniques are lauded for their 
cost-effectiveness, the initial investment in specialized 
equipment and training can be substantial. Also, for 
modalities that require contrast agents or specialized 
fluorophores, additional costs are incurred. Even though 
efforts are underway to develop lower-cost systems that 
maintain comparable accuracy to commercial systems 
[24, 25], the financial burden remains a potential chal-
lenge. Moreover, the expertise level of the surgeons in 
using these tools can influence their widespread adop-
tion. With technologies like confocal laser microscopy, 
an inexperienced user might misinterpret artifacts as 
hypercellularity, thus affecting the diagnostic outcome 
[26]. Therefore, it is important for medical training pro-
grams to include curricula that ensure proficiency in the 
use and interpretation of these emerging tools.

Fig. 1 Neurosurgical workflow diagram demonstrating the application of laser‑based technologies for intraoperative tissue analysis and tumor 
margin differentiation. Created with BioRender.com
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Safety concerns
These technologies aim to improve the safety of sur-
gical procedures, but they are not without their own 
safety concerns. For instance, increased light intensity is 
required for deeper imaging but can result in thermal tis-
sue damage if not properly administered. Standard safety 
parameters have been established to avoid such issues 
[27]. While the American National Standards Institute 
provides a maximum permissible exposure (MPE) for 
laser radiation to the eye and skin, tissue-specific limits 
for organs like the brain are yet to be standardized [28]. 
Methods such as the use of tissue-mimicking phantoms 
can help in safety testing, device design optimization, and 
calibration [29]. As in the case of laser-induced fluores-
cence (LIF) using 5-aminolevulinic acid (5-ALA), con-
cerns include potential allergic reactions, toxicity, and the 
unknown long-term effects of repeated use.

Standardization and validation
A significant challenge for these technologies is the lack 
of standardized protocols and validation studies. Tem-
poral drift, influenced by factors like aging components 
or temperature changes, affects instrument accuracy 
and requires regular calibration and data quality valida-
tion. Tools like Raman spectroscopy can be quantitatively 
validated once set to specific calibrations [30]. Despite 
some in vivo and ex vivo experiments validating aspects 
of these technologies, large-scale, multi-center trials are 
essential for their clinical standardization and validation 
[31].

Research and development
Laser-based advanced diagnostic modalities can be very 
complex and require the coordinated efforts of interdis-
ciplinary teams, including neurosurgeons, radiologists, 
oncologists, physicists, engineers, clinical researchers, 
and technologists, to name a few.

Radiology plays an important role in the multidiscipli-
nary collaboration between oncology and neurosurgery 
for the management of brain tumors. It not only inte-
grates traditional imaging methods like MRI, CT, and 
PET scans with new laser diagnostic technologies but 
also specializes in imaging fusion and brain shift analy-
sis. The latter is important for real-time surgical adjust-
ments, compensating for tissue shifts during procedures 
to maintain surgical accuracy. Image fusion software 
combines various imaging modalities, offering a multi-
dimensional view that informs surgical planning and 
intraoperative decision-making.

In their capacity for protocol and guideline creation, 
radiologists standardize the use of these technologies, 
ensuring their safe and effective incorporation into clini-
cal workflows. Radiologists also play an integral part in 

postoperative evaluations to assess treatment efficacy 
and monitor for tumor recurrence, allowing clinicians to 
adapt ongoing treatment plans. These coordinated efforts 
between radiologists, oncologists, and neurosurgeons 
can result in more accurate diagnoses, enhanced surgical 
planning, and better postoperative outcomes for patients 
with brain tumors.

Advancements in laser-based diagnostic technologies 
are under active investigation for their utility in neuro-
logical applications. Ongoing clinical trials are evaluat-
ing hyperspectral imaging for intraoperative diagnosis of 
low-grade gliomas, employing a broad electromagnetic 
spectrum for enhanced sample analysis [32–34]. Simi-
larly, the CONVIVO system, a type of confocal micros-
copy, and Raman spectroscopy are also in trials, where 
their intraoperative tissue analysis capabilities are com-
pared against standard histopathology [35, 36]. In addi-
tion to emerging technologies, established methods like 
laser speckle contrast imaging (LSCI) are studied for 
their ability to visualize cerebral vasculature intraopera-
tively, specifically in comparison to indocyanine green 
angiography (ICGA) [37].

Emerging technologies demonstrate potential in 
advancing the diagnosis and treatment of brain tumors. 
Surface-enhanced Raman spectroscopy, which employs 
nanostructured metals for signal amplification, shows 
promise for high-sensitivity brain tumor diagnostics 
[38–40]. Multiphoton microscopy offers advantages like 
improved resolution and tissue penetration and is con-
sidered for clinical applications, often alongside other 
modalities like Raman spectroscopy and fluorescence 
lifetime imaging microscopy (FLIM) [41–45].

FLIM itself has shown feasibility in real-time neurosur-
gical diagnostics and the detection of metastatic disease 
in cerebrospinal fluid [46–48]. Laser-induced breakdown 
spectroscopy, analyzed in conjunction with spiking neu-
ral networks, also offers potential in tissue composition 
analysis [49]. Elastic light scattering spectroscopy (ESS) 
and light sheet microscopy (LSM) are under investigation 
for their utility in brain tissue analysis and three-dimen-
sional imaging, respectively, with LSM’s new applica-
tion in 3D imaging of solvent-cleared organs (3DISCO) 
showing promise in tissue histopathology [50–56]. These 
technologies are in varying stages of research and hold 
potential for future clinical implementation.

Conclusion
As it stands, the application of laser-based diagnostic 
technologies in the context of brain tumor diagnosis and 
surgical guidance is an evolving field. Although conven-
tional imaging modalities like CT and MRI have been 
the cornerstone of neurological diagnostics, they have 
limitations, particularly during real-time intraoperative 
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guidance. Laser technologies offer a compelling alterna-
tive by providing real-time, high-resolution imaging data. 
However, their use remains predominantly experimental, 
and most are either in the clinical trial phase or still con-
fined to pre-clinical research.

Despite their promise, laser-based diagnostic tech-
nologies are not without challenges. The physics of light 
absorption and reflection complicates the imaging of 
deep anatomical structures, and thus, further research is 
needed to overcome these technical hurdles. Moreover, 
cost and regulatory factors may present barriers to wide-
spread clinical adoption.

Going forward, randomized controlled trials with 
larger patient populations are essential to better assess 
the clinical utility, safety, and cost-effectiveness of these 
laser-based systems. Moreover, interdisciplinary col-
laborations between radiologists, neurosurgeons, and 
engineers will be crucial for the iterative refinement 
and validation of these technologies. Future research 
should also focus on the integration of laser-based diag-
nostics with existing imaging modalities to create mul-
timodal systems that capitalize on the strengths of each 
technique.

In conclusion, while laser-based diagnostic technolo-
gies hold promise for improving the diagnosis and surgi-
cal treatment of brain tumors, their development is still 
in relatively early stages. Rigorous clinical evaluation and 
ongoing technical innovation will be required for their 
successful transition from the research laboratory to the 
operating room.
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