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Abstract 

The computer aided diagnosis (CAD) algorithms are considered crucial during the treatment planning of cerebral 
aneurysms (CA), where segmentation is the first and foremost step. This paper presents a segmentation algorithm in 
two-dimensional domain combining a multiresolution and a statistical approach. Precisely, Contourlet transform (CT) 
extracts the image features, while Hidden Markov Random Field with Expectation Maximization (HMRF-EM) seg-
ments the image, based on the spatial contextual constraints. The proposed algorithm is tested on Three-Dimensional 
Rotational Angiography (3DRA) datasets; the average values of accuracy, DSC, FPR, FNR, specificity, and sensitivity, are 
found to be 99.64%, 92.44%, 0.09%, 5.81%, 99.84%, and 93.22%, respectively. Both qualitative and quantitative results 
obtained show the potential of the proposed method.
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Background
Cerebral aneurysm (CA) is an abnormal inflammation 
within the brain blood vessels that is commonly detected 
after the age around forty [1, 2]. The mortality rate of 
these disease carriers is between 30 and 40%, whereas 
the morbidity rate ranges between 35 and 60% [3]. Com-
puter Aided Diagnosis (CAD) algorithms, also known as 
Medical Image Segmentation (MIS) algorithm, have been 
helpful in reducing the bias, time consumption, increas-
ing the CA detection accuracy, etc. [4]. MIS algorithms 
support the clinicians in playing a role during decision 

making in the diagnosis phase by providing a second 
opinion.

There have been several methods in image segmenta-
tion that include both traditional methods and machine-
learning/deep-learning methods. It may be noted that the 
deep learning (DL)-based methods, specifically neural 
networks for medical image segmentation, have received 
much attention due to their end-to-end nature and state-
of-the-art performance. Deep neural networks (NN) 
started gaining popularity after their success at ImageNet 
Large Scale Visual Recognition Challenge 2012 [5]. With 
the improvement in GPU architectures and the develop-
ment of dedicated deep learning libraries (e.g., Tensor-
flow [6] and PyTorch [7]), neural networks have become 
popular for a wide range of computationally heavy com-
puter vision tasks (e.g., object recognition and segmen-
tation). For image segmentation, a schematic diagram of 
convolutional neural networks (CNNs) is given in Fig. 1; 
it comprises a series of convolution and pooling layers 
to condense the input image into a dense feature repre-
sentation. The feature representation is utilized to recon-
struct the segmentation mask using deconvolution and 
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upsampling layers. During NN training, pre-processed 
images (e.g., normalized images with contrast enhance-
ment) are fed to the network to generate the segmenta-
tion probabilities (forward propagation). A loss function 
computes the discrepancy between the NNs prediction 
and the ground truth. Finally, the weights of the net-
work are updated using an optimizer (e.g., Adam [8]) in 
the back-propagation phase. Altogether, the type pre-
processing, architecture, choice of the loss function and 
optimizer, determines the segmentation accuracy and 
inference time of the NNs.

Over the years, several CNNs [9–11] have been pro-
posed. However, the neural networks face several chal-
lenges too. The neural networks are susceptible to 
variations in data like changes, in contrast, noise, and 
resolution [12, 13]. In a clinical setting, these variations 
are expected in the data due to multiple machines with 
several acquisition parameters that can cause the data 
distribution to change. One technical limitation for train-
ing the neural networks is due to the limited quantity of 
clinical data, resulting in overfitting (i.e., poor generaliz-
ability). Additionally, the training procedure of the neural 
networks does not provide any convergence guarantees. 
Other technical challenges include the black-box nature 
of deep learning-based approaches, which downplays the 
reliability of the neural networks in clinically sensitive 
settings. Thus, in this paper, we propose a traditional/
conventional algorithm to segment the CA from 3DRA 
datasets using a multiresolution statistical approach, 
where the Contourlet Transform (CT), in conjunction 
with Hidden Markov Random Field, is used to segment 
2D images in the Contourlet domain.

Related work
There is rich literature in conventional MIS that includes 
semi-automatic and automatic [14, 15]. Broadly, the 
semi-automatic approaches include threshold-based 
[16], model-based [17], graph-based [18, 19] methods 
that need human intervention [20], which is tedious, 
prone to inter and intra-operator variability; these fac-
tors certainly affect the segmentation accuracy. There-
fore, automatic approaches were introduced. In [16], 
spatial filtering and dual global thresholding are consid-
ered, where three parameters (i.e., two threshold values 
and filter mask size) are user-defined. Yang et al. present 
a dot enhancement filter that includes thresholding, and 
a region growing technique. However, it lacks the incon-
sistency of the sensitivity, where it ranges between 80 and 
95% for CAs larger than 5 millimeters and between 71 
and 91% otherwise. Bogunovic et al. [21] present a Geo-
desic Active Regions (GAR) based algorithm. However, 
there is the possibility of merging either a vessel with a 
CA or two vessels together. This partly happens either 
because of the insufficiency of the imaging resolution and 
the low blood flow in the small vessels. In [22], a blob-
ness filter and a k-means technique are adapted. The 
algorithm results in a false positive rate reaching 20.8%. 
Jerman et al. [23], present a blobness enhancement filter 
combined with Random Forest Decision (RFD) classifier 
and a grow-cut technique, where it is assumed that a sac-
cular CA most probably consists of more than 15 vox-
els. Thus, this assumption reduces the chances to detect 
small CAs. Suniaga et al. [24], propose a fuzzy logic in a 
level set framework along with a SVM classifier to seg-
ment saccular CAs.

Fig. 1  Deep learning-based system for image segmentation
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In [25], a method on Conditional Random Field (CRF) 
and gentle Adaboost classifier is proposed that is trained 
on six datasets and tested on two datasets. However, 
machine Learning (specifically, Deep Learning (DL)) 
models need extensive data to capture the underlying 
distribution for generalization in real-world systems. 
Additionally, the Blackbox nature of the DL models adds 
uncertainty to their predictions, thus limiting their use 
case to a second opinion in a clinical setting [26]. Lu 
et  al. [27] present a method, where multi-scale filtering 
is used to enhance the vessels suppressing the noise and 
a mixture model is built to fit the histogram curve of the 
preprocessed data. Finally, expectation maximization is 
used for parameter estimation. Kai et  al. [28] present a 
graph-cut based method for aneurysm segmentation. Yu 
et  al. [29] present a geodesic active contour (GAC) and 
Euler’s elastica model-based method for aneurysm seg-
mentation, where GAC segments the giant aneurysms 
in high contrast regions and the elastica model estimates 
the missing boundaries in low contrast regions. Thus, the 
numerous automatic segmentation algorithms reported 
so far in the literature have potential limitations that war-
rant further research on automatic methods. However, 
the automatic methods are difficult to be controlled, as 
usually desired by the clinicians during their treatment 
planning to explore various options. Thus, this paper pro-
poses a semi-automatic algorithm combining Contourlet 
Transform (CT) and Hidden Markov Random Field with 
Expectation Maximization (HMRF-EM) to segment CA 
regardless the CA shape or size.

The rest of this paper is organized as follows: in 
Sect.  "Mathematical background", the foundation and 
mathematical background for the proposed algorithm are 
presented. In Sect.  "Proposed segmentation algorithm", 
the proposed algorithm is discussed in detail. In section 
“Datasets and results”, the objective and subjective evalu-
ation of the proposed work are presented along with the 
dataset description and the environmental setup for the 
implementation. Section "Discussion" includes discus-
sion and some future work, whereas the section “Conclu-
sions” concludes the paper.

Mathematical background
Contourlet transform
Multiresolution analysis techniques usually utilize the 
image features for computer vision. There have been sev-
eral multiresolution analysis techniques such as Wavelet, 
Ridgelet, Curvelet, and Contourlet transforms, for medical 
image segmentation [30–32]. We have preferred the Con-
tourlet Transform (CT) in our proposed approach due to 
its advantages [33]. CT, being an ideal 2D transform in the 
discrete domain, has other salient features: multiresolution, 

localization, critical sampling, anisotropy, and multiple 
directions for different resolutions. In addition, this trans-
formation provides a sparse representation saving a signifi-
cant amount of memory and offering simple and fast data 
processing as it requires O(N) operations for an image with 
N-pixels [31]. These characteristics capture the geometrical 
smoothness of the 2D contours.

The Pyramidal Directional Filter Bank (PDFB) [34] com-
bines the Laplacian Pyramid (LP) and Directional Filter 
Bank (DFB) to extract the desirable fine details of CT. LP 
[35] allows the multiresolution representation of an image 
to capture point singularities by removing the noise. DFB 
[36] decomposes an image into multiple directions to cap-
ture high-frequency content as smooth contours and direc-
tional edges by formulating the captured point singularity 
into a linear structure.

Briefly, the Contourlet works as follow: First, the image, 
a0[n], is passed to the LP filter to produce two images as 
output: a coarse/approximated/low-pass image, a1[n], and 
a fine/detailed/bandpass image, b1[n]. The latter image 
(bandpass) is passed to the DFB to produce 2Lj bandpass 
directional images, cLj [n] . Subsequently, the lowpass image, 
a1[n], is passed again through LP to repeat the same pro-
cess until a certain predefined number of decomposition 
levels, Lj, is reached. Fig.  2 illustrates the CT process to 
decompose a 512 × 512 image into two levels, where 8 and 
4 directions are applied at each level, respectively.

CT has the adeptness at capturing geometrical smooth-
ness of 2D contours and anisotropy in the discrete domain. 
In addition, it has a high degree of directionality as it allows 
to define different directions for different scales, which 
is not possible in other multiresolution analysis tech-
niques. These advantages help extract the features from 
images, which would result consecutively in improved 
segmentation.

To summarize, the CT takes a 2D image, a0[n], as an 
input and decomposes it into a lowpass sub-band, aj[n], 
and several bandpass directional sub-bands, cLj [n] , which 
are called as the Contourlet coefficients. This process can 
be expressed by:

(1)aj[n] = f , θ
(L)
j,k ,n → θ

(L)
j,k ,n =

n∈Zd

gk [n]φj,k(t)
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where is the LP basis function for scale decomposi-
tion composed of the lowpass filter, gk[n], and the scal-
ing function, φj,k(t); and ρ(L) is the DFB basis function for 
directional decomposition composed of orthogonal filter, 
dk[n], and the directional function, φj,n(t). The parameters 
j, k, d, and n, used in Eqs. (1) and (2), are number of lev-
els/scales, number of directions for each level, dimen-
sionality (in our case, it is 2 since we are working in 2D 
domain), and a scale parameter along the frequency axis, 
respectively. The overall decomposition process of the 
CT is provided in Algorithm 1.

The number of the decomposition levels is experi-
mentally selected since it depends on the image size 
and the amount of the details to be highlighted. For the 
number of directions, it is recommended to gradually 
increase them by 2k.

Hidden Markov random field model
HMRF model is a statistical approach in the stochastic 
domain that provides prior knowledge helping simplify 
the MIS task.

HMRF model segments the medical images based on 
the spatial correlation between the neighboring pixels. 
Some important notions about this model are:

(2)cL
j

j,k [n] = f , ρ
(L)
j,k ,n → ρ

(L)
j,k ,n =

∑

n∈Zd

dk [n]ϕj,n(t)
•	 Random field: The random variables are the inten-

sity levels in an image. In HMRF model, two ran-
dom fields exist:

•	Hidden random field: X = (x1, x2,.., xN)l/xi ∈ L, 
i ∈ S is a random field in a finite state space, L, 
and indexed by a set, S, with respect to a neigh-
boring system of size, N.

	 The state of this field X is unobservable/hidden 
and every xi is independent of all other xj. The 
objective of this assumption is to classify each 
pixel independently [37].

•	Observable random field: Y = {y = (y1, y2,.., yN)l/
yi ∈ D, i ∈ S} is a random field in a finite space, D, 
and indexed by a set, S, with respect to a neigh-
boring system of size, N.

	 This random field, Y , is observable and it can only 
be defined with respect to X, where yi follows a con-
ditional probability distribution given any configu-
ration of xi = l : p(yi � l) = {f (yi; θl), ∀l ∈ L} , 
where θl is the set of the involved parameters.

•	 Parameters: The set of involved parameters, θl, are 
unknown. Therefore, a model fitting is adopted to 
estimate them. In our context, the parameters are 
mainly the mean, µ, and the standard deviation, σ.

Fig. 2  Contourlet transform decomposition process of a 512 × 512 image into 2 levels, where 8 and 4 directions are applied at each level, 
respectively
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•	 Conditional independence: The two random fields, 
(X, Y), are conditionally independent.

•	 Neighborhood system: It is a way to define the sur-
rounding pixels for a specific pixel [38].

•	 Clique: It is a subset of pixels, where every pair of dis-
tinct pixels are neighbors. A value is assigned to each 
clique, c, to define the clique potential Vc(x), where 
the sum of all these values results in the energy func-
tion, U (x), that we aim to minimize.

To know θl, EM algorithm is preferred. The HMRF-EM 
framework [39] incorporates the EM algorithm in associ-
ation with HMRF model to estimate the parameters and 
segment using iterative updates. The framework starts 
by initializing both: the segmentation and parameters 
(means, µ, and standard deviations, σ). Then, iteratively, 
it goes through the Expectation Step (E-Step) and Maxi-
mization Step (M-Step) to update these parameters and 
the initial segmentation until no further development is 
observed.

The E-Step updates the segmentation by assigning to 
each pixel an estimated class label, xˆ, from a set of labels, 
L. The assignment is done based on the MAP criterion, 
which tries to minimize the posterior energy using the 
current parameters estimate, during the energy maximi-
zation the conditional posterior probability distribution, 
P (Y l/X), gets maximized. Eq. (4) illustrates the energy 
calculation:

where U (x) is the energy function as illustrated in Eq. (3) 
and U (yl/x) is the likelihood energy illustrated below in 
Eq. (5).

While the M-Step updates the parameters based on the 
ML criterion, which tries to maximize the expected like-
lihood found in the E-Step. The parameters µ and σ are 
calculated using the Eqs. (6) and (7), respectively.

(3)U(x) =
∑

c∈C

Vc(x)

(4)x̂ = arg min(U(yx)+ U(x))

(5)U
(
y � x

)
=

∑

i∈S

[(
yi − µxi

)2

2σ 2
+ log

(
σxi

)
]

(6)µ =

∑
i∈S P

(l)(l � Yi)Yi∑
i∈S P

(l)(l � Yi)

(7)σ =

√∑
i∈S P

(l)(l � Yi)(Yi − µ)2∑
i∈S P

(l)(l � Yi)

This framework works well for small data dimensions; 
its main advantages are easy to implement, provides an 
accurate segmentation, and it is less sensitive to noise 
compared to other segmentation techniques since it well 
considers contextual information [40].

Modifications to conventional k‑means clustering
This is well-known that k-means is a clustering technique 
maximizing the similarity of intra-class and minimizing 
the similarity of inter-class; it is computationally fast. In 
our method, we initialize k automatically based on the 
image entropy, a statistical measure of randomness that 
can be used to characterize the texture of the gray-scale 
image [41]. It is expressed in Eq. (8):

where X is a vector of all intensities of an image and n is 
the number of pixels.

Proposed segmentation algorithm
The proposed CA segmentation algorithm is illustrated 
in Fig.  3. The algorithm starts by feeding a series of 2D 
images, of a certain patient, in the Digital Imaging and 
Communications in Medicine (DICOM) format. The 
selection of the Region of Interest (ROI) from the entire 
cerebral vasculature is done manually. Subsequently, the 
following steps are performed on each 2D image.

During the first step, CT is applied to extract features 
from the input image by decomposing it into 6 pyramidal 
levels and different number of directions for each level, 
where the number of the directional decomposition at 
each pyramidal level (from coarse to fine) are: 22, 22, 42, 
42, 82, and 82 [31, 42]. As discussed earlier, CT consists 
of two main filters, LP and DFB. A ladder filter, known as 
PKVA filter [43], is selected for the first filter. The PKVA 
filter is effective to localize edge direction as it reduces 
the inter-direction mutual information [31]. As for the 
second filter, 9 − 7 bi-orthogonal Daubechies filter [44] is 
selected; this filter significantly reduces all the inter-scale, 
inter-location, and inter-direction mutual information of 
the Contourlet [31]. After the decomposition by CT, the 

(8)k = −

n−1∑

i=0

P(xi) log2P(xi)
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lowpass subband image, aj[n], is used to perform the rest 
of the steps.

To apply the second step (HMRF-EM) of the segmen-
tation algorithm, two prior steps need to be performed. 
First, an initial segmentation is generated using the 
k-means method, which is known with its under-esti-
mation to complement the HMRF-EM framework [30]. 
In addition, a Canny edge filter [45] is applied to high-
light the image edges. After that, the HMRF-EM algo-
rithm iterates between the E-Step and M-Step to enhance 
the initial segmentation constrained by the Canny edge 
detector.

The HMRF-EM method starts after getting the initial 
segmentation, xˆ(0), and initial parameters, θ(0), obtained 
by the k-means clustering, the constrained image, cej[n], 
obtained by the Canny edge operator, and the lowpass 
subband image, aj[n], obtained by the Contourlet decom-
position. During this step, the algorithm iterates between 
the steps E and M to refine the initial segmented image, 
constrained by the Canny segmented image, resulting 
in the final segmented 2D image by minimizing the pos-
terior energy function as explained in section "Hidden 
Markov random field model".

As the last step, Inverse Contourlet Transform (ICT) is 
applied to reconstruct the image. Here, the lowpass sub-
band image, aj[n], which represents the coarsest Con-
tourlet coefficients, is replaced by the final segmented 

image, §̂(MAP_itr) The ICT is achieved using the same fil-
ters as in the decomposition stage, where the 9 − 7 and 
PKVA filters are used for the LP and DFB, respectively.

After completing these two phases, the reconstruction 
of all the segmented 2D images is performed to get the 
final segmented 3D volume of the ROI. The pseudocode 
for the overall proposed CA segmentation algorithm is 
presented in Algorithm 3.

Datasets and results
Datasets
The aneurysms obtained from the respective 3DRA scan-
ner (Siemens machine) were small (≤ 3 millimeters) and 
with decent contrast. This contrast is obtained by sub-
tracting two images: the first image is acquired by inject-
ing a contrast agent through a catheter into one of the 
vessels that leads to the brain vessels, while the second 

Fig. 3  Flowchart of the proposed segmentation
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one is obtained before injecting this agent. Six 3D RA 
datasets are provided by Hamad Medical Cooperation 
(HMC) to validate the proposed segmentation; each 
dataset consists of 385 2D slices of size 512 × 512 each. In 
addition, the corresponding ground truth datasets were 
obtained from the same hospital that were prepared by 
three neuro-experts.

Results
We have two scenarios: 1-to segment the region of inter-
est, and 2-the entire input volumetric data. in scenario 

1, we manually, select the slices to get the ROI and it is, 
on average, 86 slices and they are continuous, whereas 
in scenario 2, we feed all the slices as input to the algo-
rithm. Both the quantitative and qualitative results are 
obtained by comparing the segmented volumes with the 
respective ground truth volume, as elaborated in sec-
tion "Objective evaluation" and "Subjective evaluation", 
respectively. Figs. 4, 5, 6, and 7 depict each dataset before 
and after applying the segmentation. To test, if the results 
are statistically significant, we set the significance level, α 
= 0.05 and we obtained the p-values smaller than 0.05, 

Fig. 4  Three slices from dataset 1 a before segmentation b after segmentation c original ROI d segmented ROI

Table 1  The four adopted performance metrics for the quantitative evaluation

Performance Metric Definition Equation

Accuracy Correctness of the overall Segmentation TP+TN
TP+TN+FP+FN

DSI Amount of overlap between the two segmentations 2×TP
2×TP+FP+FN

FPR Number of pixels incorrectly segmented FP
FP+TN = 1− Specificity

FNR Number of pixels incorrectly rejected FN
FN+TP = 1− Sensitivity

Sensitivity Number of pixels segmented correctly TP
TP+FN

Specificity Number of pixels excluded correctly TN
TN+FP
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indicating that these segmentation results correctly iden-
tified the brain aneurysm.

Registration
We have also considered image registration in our work 
to enable the comparison between the segmented volume 
and the corresponding ground truth.

In this process, one of the images is defined as 
the target (or the subject), which we wish to apply a 

transformation, while the other image is defined as the 
reference (or the source). In our case, the target image is 
the segmented ROI volume, while the reference image is 
the ground truth ROI volume. The target image is trans-
formed by means of the selected mapping functions to 
align it with the reference image [46]. We have selected 
an affine transformation; Fig. 8c illustrates the coordinate 
systems of the segmented volume and the ground truth 
data before and after registration.

Fig. 5  Three slices from dataset 2 a before segmentation b after segmentation c original ROI d segmented ROI

Table 2  Results of objective evaluation

Measure Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Average

Accuracy (%) 99.99 99.92 99.78 99.75 99.28 99.15 99.64

DSC (%) 97.46 93.15 94.13 89.56 94.16 89.59 92.44

FPR (%) 0.01 0.06 0.17 0.08 0.16 0.04 0.09

FNR (%) 1.16 3.58 2.8 13.56 3.50 8.67 5.81

Sensitivity (%) 98.84 96.42 97.20 86.44 97.95 86.99 93.22

Specificity (%) 99.99 99.94 99.83 . 99.92 99.77 99.84 99.84
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Objective evaluation
Six performance metrics are used to measure the pro-
posed segmentation quantitatively: Dice Similarity Index 
(DSI), sensitivity, specificity, accuracy, False Positive 
Ratio (FPR), and False Negative Ratio (FNR). The value of 
these metrics’ ranges between 0 and 1. Table 1 provides 
the definition and the formula of each metric.

Two measures, True Positive (TP) and True Negative 
(TN), in Table  1 indicate a correct segmentation, while 
False Positive (FP) and False Negative (FN) indicate an 
incorrect segmentation. Fig.  9 depicts the meaning of 
each measure more clearly.

The values of these performance metrics are presented 
in Table 2 against each dataset.

Subjective evaluation
Each segmentation has been assessed visually by five 
observers (neurologists). The score, ranging between 0 
and 5, is assigned by each observer, where 5 means that 
the ground truth volume almost completely matches with 
segmented one and 0 means that the two volumes do not 
match. Table 3 presents the observations.

Fig. 6  Three slices from dataset 3 a before segmentation b after segmentation c original ROI d segmented ROI

Table 3  Results of Subjective Evaluation

Observation
by

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Average

Observer 1 5 4 4 3 4 4 4.00

Observer 2 5 4 5 3 5 4 4.41

Observer 3 5 4 5 4 5 3 4.16

Observer 4 5 4 4 4 4 4 4.08

Observer 5 5 4 5 3 5 3 4.08

Average 4.14
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Discussion
Both the qualitative and quantitative results are prom-
ising when tested on these 3DRA datasets. In the quan-
titative evaluation, the average values of accuracy, 
DSC, FPR, FNR, specificity, and sensitivity, are 99.64%, 
92.44%, 0.09%, 5.81%, 99.84%, and 93.22%, respectively; 
an average of 4.14 over 5 is obtained in the qualitative 
evaluation.

It may be observed in Tables  2 and 3 that the last 
dataset has the worst results as compared to the 
remaining datasets in both the quantitative and qualita-
tive evaluation. This may be since the provided ground 
truth data does not involve the complete brain vessels 
tree and only a delineated ROI is provided, where some 
surrounding vessels are excluded. The same may be 
observed from Fig. 10.

The computational time to segment a CA volume is 
considerably fast. Table  4 reports the running time of 
the proposed segmentation algorithm for the ROI in 
seconds (sec) and the whole volume of a subject in min-
utes (min). Even though the results are acceptable, the 
computational time can further be reduced by using 
Field-Programmable Gate Array (FPGAs) or Graphics 
Processing Unit (GPUs).

We have also compared the performance of the pro-
posed method with some similar methods that have 
been published recently. The results are provided in 
Table  5. The results show that the performance of the 
proposed method is better than the others.

Additionally, we have compared (in Table  6) the pro-
posed method with some popular DL-based methods, 

Fig. 7  Three slices from dataset 4 a before segmentation b after segmentation c original ROI d segmented ROI

Table 4  Time consumption to segment CA using the proposed approach

Region Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Average

ROI (sec.) 32.12 28.56 93.46 57.56 93.61 58.41 68.31

(51 slices) (51 slices) (161 slices) (80 slices) (155 slices) (88 slices) (110 slices)

Volume (min.) 4.38 3.21 3.30 5.31 3.90 5.87 4.60

(385 slices) (385 slices) (385 slices) (385 slices) (385 slices) (385 slices) (385
Slices)
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including Voxel-Morph (VM) [49], LT-Net [50], and Sym-
metric Normalization (SyN) [51]. We have selected these 
methods because they have been regularly preferred by 
the research fraternity for comparison purpose. Among 
these, Voxel-Morph is probably the most famous meth-
ods in recent years. The results show that the proposed 
method fairly performs as compared to the DL-based 
methods although the margin is not very significant. 

Furthermore, we have also compared the computational 
complexity involved in table 7.

Conclusions
Sub-Arachnoid Hemorrhage (SAH), caused by a rup-
tured CA, is a serious condition associated with high 
rates of morbidity and mortality. Therefore, detecting 
and diagnosing CAs at an early stage is imperative. In this 
paper, a semi-automatic CA segmentation method is pro-
posed using Contourlet transform, as a multiresolution 
technique, and the hidden Markov random field model 
with expectation maximization, as a statistical technique. 
Promising results have been obtained when tested on 
3DRA datasets. In future, we intend to increase the num-
ber of datasets to validate its robustness and reduce the 
computational time further so that the method can be 
considered for real clinical practice. Furthermore, this 
algorithm can be extended to test on other human organs 
such that liver vessels.

Fig. 8  Co-ordinate system of dataset 1 before and after registration. The right column is related to the ground truth data. The left column is related 
to the original segmented ROI volume

Fig. 9  Four measures used in performance metrics
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